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Introduction

Why a book on bacterial adhesion? Adhesion plays a major role in the bac-
terial lifestyle. Bacteria adhere to all surfaces and did so long before the first
eukaryotes were around; stromatolites, which are calcium-based rocks in shallow
seawaters formed and inhabited by cyanobacteria, are among the oldest fossils
found (Battistuzzi et al., 2004). Bacteria can adhere to each other, a phenomenon
referred to as autoagglutination, which is generally viewed as one of the first steps
towards biofilm formation. Bacteria can also form more complex and defined struc-
tures, such as the Myxococcus fruiting bodies – Myxococcus is generally seen as a
“social” bacterium with complex inter-cell interactions, and as a model for the early
evolution of multicellularity (Konovalova et al., 2010). Last but not least, bacteria
can adhere to other cells: different prokaryotic species in the formation of com-
plex biofilms, or eukaryotic cells during disease. Adhesion to eukaryotic cells can
serve different purposes in commensalism, symbiosis, and pathogenesis. The gen-
eral principle, the expression of surface molecules to adhere to other structures, stays
the same.

But why this particular book when reviews on bacterial pathogenesis are com-
mon, if not quite a dime a dozen? Our focus is: how are such adhesion phenomena
best studied? Microbial genetics experiments have greatly enhanced our knowl-
edge of what bacterial factors are involved in adhesion. For numerous reasons,
though, biochemical and structural biology knowledge of the molecular interactions
involved in adhesion is limited. Moreover, many of the most powerful biophysi-
cal methods available are not frequently used in adhesion research, meaning that
the time dimension – the evolution of adhesion during biofilm formation remains
poorly explored. The reason for this is, we believe, on the one hand microbiologists,
who are experts at handling and manipulating the frequently pathogenic bacterial
organisms in which adhesion is studied, lack detailed knowledge of the biophysi-
cal possibilities and have limited access to the frequently expensive instrumentation
involved. On the other hand, the experts in these methods frequently do not have
access to the biological materials, nor do they necessarily understand the biological
questions to be answered. The purpose of this book is thus to overcome this gap in
communication between researchers in biology, chemistry, and physics, and to
display the many ways and means to address the topic of bacterial adhesion.
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vi Introduction

Thus, the book consists of three loosely connected parts. The first Chapters 1 to 7
deal, broadly speaking, with bacterial adhesion from a biological perspective,
where different bacterial species and their repertoire of adhesion molecules are
described. The chemistry section includes the biochemistry and structural biol-
ogy knowledge which have been obtained on some of the adhesin systems. The
physics section contains examples of biophysical methods that have been success-
fully applied to bacterial adhesion. For obvious reasons, we had to limit ourselves
in the choice of systems and methods described in this book. The biological
systems described are only examples, and mostly come from genera containing
the better-studied human pathogens. We tried nonetheless to cover a broad spec-
trum of organisms, both Gram-positive and Gram-negative bacteria. Chapters 1
and 9 also put specific Gram-negative and Gram-positive systems into a historical
perspective and describe the development of the field of infectious diseases. Many
of the findings also apply to bacteria that are either non-pathogenic (Chapter 13)
or pathogenic on different species and kingdoms, and Chapter 5 nicely shows that
in plant pathogens, adhesins similar to those of human pathogens exist and serve
comparable functions.

The chemistry section (Chapters 8 to 15), contains examples of molecular struc-
tures of the very different types of adhesins found. These are mostly from the human
pathogens discussed in the biology section, again from both Gram-negative and
Gram-positive bacteria. We have also included two chapters on carbohydrate struc-
tures (13 and 14), as these structures are at least as important as the proteins in
bacterial pathogenesis. One pattern that emerges is that most of these adhesins con-
tain repetitive elements, which make them long and fibrous, but which might also
allow for easy recombination and thus evolution in the face of the host immune
system.

The physics section (Chapters 16 to 22) originally seemed the hardest to fill:
how should we identify methods useful in adhesion research, but infrequently used?
Discussions with colleagues and literature searches led us to authors on such diverse
methods as force measurements, electron microscopy, NMR, and optical tweez-
ers, as well as a chapter on how bacteria adhere to medical devices and how this
can be studied (Chapter 22). Moreover, the enthusiastic response of these authors
showed to us that indeed, there is a need for a forum to display the panel of technical
possibilities to the researchers who struggle with unsolved biological questions.

Now that the book is finished and out of our hands, we hope that it will achieve
our goals – that it will be of broad interest to researchers from different fields all
working on different aspects of bacterial adhesion. We hope it provides an advanced
but jargon-free introduction to the state of adhesion research in 2010, one that
will bring researchers together in new, exciting, and most importantly, interdisci-
plinary projects. The struggle for new therapies against bacterial infections is not
made easier by the “Red Queen Principle” – the fact that pathogens evolve and
adapt quickly in the face of new challenges (van Valen, 1973). We strongly believe
that only interdisciplinary research can tackle the growing problems of multidrug
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resistance, hospital-acquired infections, and other adhesion- and biofilm-related
topics in human health that require new drugs, disinfectants, or vaccines.

We thank all of our authors for their hard work and Thijs van Vlijmen of Springer
for being always available to answer our questions.

Tübingen Dirk Linke
Helsinki Adrian Goldman
November 2010
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Chapter 1
Adhesins of Human Pathogens
from the Genus Yersinia

Jack C. Leo and Mikael Skurnik

Abstract Bacteria of the Gram-negative genus Yersinia are environmentally
ubiquitous. Three species are of medical importance: the intestinal pathogens
Y. enterocolitica and Y. pseudotuberculosis, and the plague bacillus Y. pestis. The
two former species, spread by contaminated food or water, cause a range of gastroin-
testinal symptoms and, rarely, sepsis. On occasion, the primary infection is followed
by autoimmune sequelae such as reactive arthritis. Plague is a systemic disease with
high mortality. It is a zoonosis spread by fleas, or more rarely by droplets from indi-
viduals suffering from pneumonic plague. Y. pestis is one of the most virulent of
bacteria, and recent findings of antibiotic-resistant strains together with its potential
use as a bioweapon have increased interest in the species. In addition to being sig-
nificant pathogens in their own right, the yersiniae have been used as model systems
for a number of aspects of pathogenicity. This chapter reviews the molecular mech-
anisms of adhesion in yersiniae. The enteropathogenic species share three adhesins:
invasin, YadA and Ail. Invasin is the first adhesin required for enteric infection; it
binds to β1 integrins on microfold cells in the distal ileum, leading to the ingestion
of the bacteria and allows them to cross the intestinal epithelium. YadA is the major
adhesin in host tissues. It is a multifunctional protein, conferring adherence to cells
and extracellular matrix components, serum and phagocytosis resistance, and the
ability to autoagglutinate. Ail has a minor role in adhesion and serum resistance.
Y. pestis lacks both invasin and YadA, but expresses several other adhesins. These
include the pH 6 antigen and autotransporter adhesins. Also the plasminogen acti-
vator of Y. pestis can mediate adherence to host cells. Although the adhesins of the
pathogenic yersiniae have been studied extensively, their exact roles in the biology
of infection remain elusive.

J.C. Leo (B)
Institute of Biotechnology, Viikinkaari 1, University of Helsinki, FIN-00014 Helsinki, Finland
e-mail: jack.leo@helsinki.fi

1D. Linke, A. Goldman (eds.), Bacterial Adhesion, Advances in Experimental
Medicine and Biology 715, DOI 10.1007/978-94-007-0940-9_1,
C© Springer Science+Business Media B.V. 2011



2 J.C. Leo and M. Skurnik

1.1 Introduction

Plague is arguably the most notorious of all diseases. This calamitous affliction is
particularly virulent, and has shaped the course of history. It is estimated that the
Black Death of fourteenth century Europe wiped out approximately 30% of the
population (Perry and Fetherston, 1997). In 1894, Alexandre Yersin discovered the
causative agent of plague to be a Gram-negative bacillus. Later, this bacterium was
named Yersinia pestis in his honour. In addition to this infamous pathogen, two
other members of the genus, Y. enterocolitica and Y. pseudotuberculosis, are known
to cause human diseases.

Y. enterocolitica and Y. pseudotuberculosis cause food poisoning and are rela-
tively abundant in the environment. Plague is still endemic in several regions of
the world, including the Western USA and many regions in Africa, Asia and Latin
America. Between 1000 and 5000 cases of human plague have been reported to
the World Health Organisation per year, 100–200 leading to death, but a significant
number of cases probably go unreported. Worryingly, antibiotic-resistant stains of Y.
pestis have emerged, including some which are resistant to multiple drugs (Prentice
and Rahalison, 2007).

Thus, the genus Yersinia is a medically important one, being prevalent and
responsible for several human diseases. In addition, bacteria of the genus serve as
important model organisms for various aspects of pathogenicity, including adhesion,
invasion, immune evasion and effector protein delivery. This chapter gives a short
overview of the biology of the human pathogenic yersiniae, followed by a more
detailed discussion of the adhesins expressed by this family of bacteria.

1.2 The Human Pathogenic Yersiniae

1.2.1 Enteropathogenic Yersiniae

The yersiniae are facultative anaerobic Gram-negative pleiomorphic rods of the
family Enterobacteriaceae. The genus contains 15 recognised species, with envi-
ronmental, commensal and pathogenic representatives. Pathogenicity to humans
correlates with the presence of the Yersinia 70-kb virulence plasmid pYV, found
in disease-causing strains of Y. enterocolitica, Y. pseudotuberculosis and Y. pestis,
but absent from the other species.

The two most commonly encountered human pathogenic species are Y. ente-
rocolitica and Y. pseudotuberculosis. Like most other Yersinia species, both are
ubiquitously found in aquatic environments, soil, and animals. Infections caused
by both organisms have been reported worldwide. Although rather distantly related,
Y. enterocolitica and Y. pseudotuberculosis share a number of features.

Though regarded as a single species, Y. enterocolitica is heterogeneous and is
now considered to consist of two genetically distinguishable subspecies, Y. ente-
rocolitica subsp. enterocolitica and Y. enterocolitica subsp. palearctica (Neubauer
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et al., 2000). In addition, the species comprises 6 biogroups (1A, 1B, 2, 3, 4 and 5),
based on biochemical variability, which are further subdivided into approximately
60 serotypes (Bottone, 1997). Y. enterocolitica has been isolated from a number of
mammalian hosts, with swine being a significant reservoir for pathogenic strains of
this organism. Y. enterocolitica is responsible for the majority of human cases of
yersiniosis, and undercooked pork products have been implicated in a large number
of outbreaks (Bottone, 1997).

Y. pseudotuberculosis derives its name from the tuberculosis-like granulomatous
abscesses it causes in the spleen and liver of infected animals. A less common
human pathogen than Y. enterocolitica, Y. pseudotuberculosis is associated with
outbreaks from fresh produce like lettuce and carrots (Jalava et al., 2006). Y. pseu-
dotuberculosis infections are generally more severe than those of Y. enterocolitica,
and are more likely to require hospitalisation (Long et al., 2010). In addition to gas-
trointestinal infections, Y. pseudotuberculosis is implicated as the cause of Far East
scarlet-like fever and Kawasaki disease. The former mimics symptoms often seen in
scarlet fever caused by group A streptococci, including widespread scarlatinoid rash
and toxic shock syndrome (Eppinger et al., 2007). The latter is an inflammatory syn-
drome affecting the blood vessels, lymphatics, skin, mucous membranes and heart.
Though the aetiology of Kawasaki disease has not been established, epidemiologi-
cal data suggest Y. pseudotuberculosis as a possible agent in the development of the
syndrome (Vincent et al., 2007).

Infection by either organism follows a similar course. The bacteria are ingested
with contaminated food or water. The bacteria then traverse the gastrointestinal tract
until they reach the terminal ileum, where they cross the intestinal mucosa. Crossing
is facilitated by microfold (M) cells in the intestinal epithelium (Miller et al., 2007).
M cells are transcytotic epithelial cells associated with Peyer’s patches, the lym-
phoid follicles of the intestine. They function in sampling the luminal solution for
immunogenic substances, which are then transported by transcytosis to the under-
lying immune cells of the follicle. Yersiniae and several other enteropathogens,
including Salmonella and Shigella, can hijack this transport process to gain entry
to the submucosa.

Once in the follicle, yersinae replicate extracellularly. Growth of these bacteria
leads to destruction of the follicle (Autenrieth and Firsching, 1996). The bacte-
ria can then disseminate to the mesenteric lymph nodes. Usually the infection is
self-limiting, but in severe cases bacteria can spread to other organs (the liver,
spleen, kidneys and lungs), leading to systemic infection and bacteraemia. In addi-
tion to this infection route, it is probable that bacteria from a pool replicating in the
intestinal lumen can infect the liver and spleen by some other means, possibly by
disseminating through the hepatic portal vein (Barnes et al., 2006).

The symptoms of yersiniosis are varied. Cases range from mild gastroenteritis
and diarrhoea to pseudoappendicular syndrome (Bottone, 1997). Enterocolitis is a
typical manifestation of yersinioisis in young children, whereas terminal ileitis and
mesenteric lymphadenitis (the causes of pseudoappendicitis) are usual for adults.
Diarrhoea, occasionally bloody, is associated with most cases of Y. enterocolitica
infection but is less usual for Y. pseudotuberculosis. Sepsis is an uncommon result
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of yersiniosis. Primary infections by enteropathogenic yersiniae are infrequently
followed by sequelae such as reactive arthritis (inflammation of joints), erythema
nodosum (localised skin inflammation), iritis or glomerulonephritis (inflammation
of the kidney) (Bottone, 1997).

1.2.2 Yersinia pestis

Three major plague pandemics have blighted recorded human history (Perry and
Fetherston, 1997). The first, referred to as the Justinian plague, spread around the
Mediterranean in the sixth century AD. The most famous was the second pandemic,
the Black Death of Europe, which started in the fourteenth century and continued
intermittently for a further 300 years. Although there is some debate as to whether
Y. pestis was in fact the pathogen behind these historical pandemics, there is con-
siderable evidence linking the bacterium to the Black Death (Stenseth et al., 2008).
The third pandemic (“modern plague”) initiated in China in the mid-nineteenth cen-
tury and has since spread across the world to continue to the present, albeit at a low
incidence.

Y. pestis appears to have diverged from its parent species Y. pseudotuberculosis
within the last 20,000 years. In contrast, the Y. pseudotuberculosis and Y. entero-
colitica lineages diverged between approximately 150 and 200 million years ago
(Achtman et al., 1999). Y. pestis is thus very closely related to Y. pseudotuberculosis,
and in fact can be considered a pathovar of this species. However, due to its histor-
ical importance and public health considerations Y. pestis has not been reclassified
as belonging to its parent species.

Y. pestis is one of the most virulent organisms known. It is highly invasive and
proliferates rapidly in host tissues. Like its enteropathogenic relatives, Y. pestis repli-
cates extracellularly and the first sites for replication are within lymphatic tissues,
normally lymph nodes. However, Y. pestis is also able to survive and replicate within
macrophages (Prentice and Rahalison, 2007). The swift replication of plague bacilli
in lymph nodes quickly leads to their spread into the blood stream resulting in mas-
sive bacteraemia (∼108 bacteria/ml blood). The mortality of plague is staggering;
untreated, the disease is fatal in 40–70% of cases (Stenseth et al., 2008).

Plague is a zoonosis. The primary hosts for Y. pestis are rodents. Fleas, usually
of the genus Xenopsylla, act as the vector transporting the pathogen from host to
host. This form of plague (sylvatic plague) is endemic to many regions of the world
(Perry and Fetherston, 1997). However, in inhabited areas of poor hygiene where
rodents, particularly rats, and humans interact, the disease can be transmitted to
humans (urban plague). Xenopsylla fleas will take blood meals from humans, and
so the disease can spread from rodent to human or human to human aided by the
flea vector.

When a flea takes a blood meal from a host infected with Y. pestis it ingests a
significant number of bacteria. Once inside the flea, Y. pestis adheres to the spines
of the proventriculus, a compartment at the beginning of the digestive tract, and


